msdnet.network module¶
Module implementing neural networks.
-
class
msdnet.network.Network[source]¶ Bases:
abc.ABCBase class for a neural network.
-
abstract
forward(im, returnoutput=True)[source]¶ Compute a forward pass of the network.
- Parameters
im – input image (channels x rows x columns)
returnoutput – whether to return the output image (default: True)
- Returns
output image (channels x rows x columns)
-
abstract
backward(im)[source]¶ Compute a backpropagation pass of the network. Sensitivity maps of each intermediate image are stored within the network.
- Parameters
im – error gradient image (channels x rows x columns)
-
abstract
getgradients()[source]¶ Return a flat array with all gradient variables.
- Returns
all gradient variables
-
updategradients(u)[source]¶ Update variables of network within a thread.
- Parameters
u – update variables
-
abstract
updategradients_internal(u)[source]¶ Update variables of network.
- Parameters
u – update variables
-
abstract
to_dict()[source]¶ Return a dictionary containing all network variables and parameters.
- Returns
all network variables and parameters
-
abstract
load_dict(dct)[source]¶ Set all network variables and parameters from dictionary.
- Parameters
dct – all network variables and parameters
-
abstract classmethod
from_dict(dct, gpu=True)[source]¶ Initialize network and all network variables and parameters from dictionary.
- Parameters
dct – all network variables and parameters
-
classmethod
from_file(fn, gpu=True, groupname='network')[source]¶ Initialize network and all network variables and parameters from file.
- Parameters
fn – filename
gpu – (optional) whether to use GPU or CPU
-
abstract
-
class
msdnet.network.MSDNet(d, dil, nin, nout, gpu=True)[source]¶ Bases:
msdnet.network.NetworkMain implementation of a Mixed-Scale Dense network.
- Parameters
d – depth of network (width is always 1)
dil –
dilations.Dilationsclass defining dilationsnin – number of input channels
nout – number of output channels
gpu – (optional) whether to use GPU or CPU
-
forward(im, returnoutput=True)[source]¶ Compute a forward pass of the network.
- Parameters
im – input image (channels x rows x columns)
returnoutput – whether to return the output image (default: True)
- Returns
output image (channels x rows x columns)
-
backward(im, inputdelta=False)[source]¶ Compute a backpropagation pass of the network. Sensitivity maps of each intermediate image are stored within the network.
- Parameters
im – error gradient image (channels x rows x columns)
-
getgradients()[source]¶ Return a flat array with all gradient variables.
- Returns
all gradient variables
-
normalizeinput(datapoints)[source]¶ Normalize input of network to zero mean and unit variance.
- Parameters
datapoints – list of datapoints to compute normalization factors with.
-
normalizeoutput(datapoints)[source]¶ Normalize output of network to zero mean and unit variance.
- Parameters
datapoints – list of datapoints to compute normalization factors with.
-
to_dict()[source]¶ Return a dictionary containing all network variables and parameters.
- Returns
all network variables and parameters
-
class
msdnet.network.SegmentationMSDNet(*args, **kwargs)[source]¶ Bases:
msdnet.network.MSDNetMain implementation of a Mixed-Scale Dense network for segmentation.
Same parameters as
MSDNet.