Note
Click here to download the full example code
Example 06: Apply trained network for regression (tomography)ΒΆ
This script applies a trained MS-D network for regression (i.e. denoising/artifact removal) Run generatedata_tomography.py first to generate required training data and train_regr_tomography.py to train a network.
# Import code
import msdnet
import glob
import tifffile
import os
# Make folder for output
os.makedirs('tomo_results', exist_ok=True)
# Load network from file
n = msdnet.network.MSDNet.from_file('tomo_regr_params.h5', gpu=True)
# Process all test images
flsin = sorted(glob.glob('tomo_test/lowqual/*.tiff'))
dats = [msdnet.data.ImageFileDataPoint(f) for f in flsin]
# Convert input slices to input slabs (i.e. multiple slices as input)
dats = msdnet.data.convert_to_slabs(dats, 2, flip=False)
for i in range(len(flsin)):
# Compute network output
output = n.forward(dats[i].input)
# Save network output to file
tifffile.imsave('tomo_results/regr_{:05d}.tiff'.format(i), output[0])